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Optical Phase Lock Loop Based Phased Array
Transmitter for Optical Communications

Yasha Vilenchik∗, Baris I. Erkmen†, Naresh Satyan‡, Amnon Yariv∗‡, William H. Farr†, and John

M. Choi†

We propose a novel deep space optical communication scheme, in which an integrated

optical phased array (OPA) is used for both phase modulation and fine beam steering. In

particular, an optical phase-locked loop (OPLL) based phased array with full electronic

control over the phase is introduced and analyzed. The performance of such an array as a

beam steering mechanism is evaluated and compared to realistic steering requirements for

deep space applications. It is shown that an array with a high fill factor (> 0.7) with

about 300 elements per dimension is needed to meet these requirements. The effect of

residual phase noise due to limited loop bandwidth is analyzed. Finally the theory is

validated by experimental results demonstrating successful beam steering using a two

element phased array.

I. Introduction

The science returns from virtually all missions, near-Earth and deep space alike, are
limited by the communication downlink rate to Earth, which are, in turn, limited by power
and spectrum allocation. Optical communications has emerged as a solution offering
order-of-magnitude increases in data rate and available modulation spectrum. The current
deep-space optical communications paradigm relies on sending high peak power laser
pulses with a low duty cycle, such that a low average power is maintained. Typical lasers
in this category have low wall-plug-to-output power conversion efficiency (e.g. < 25 %
with state-of-the-art fiber lasers). The need for accurate pointing of both the transmitter
and receiver nodes is typically achieved with mechanical fine-steering, i.e., by using
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high-bandwidth, feedback-controlled tip and tilt mirrors or piezo-electric actuators. This
steering mechanism is a critical component of the spacecraft transmitter optics, and
therefore it constitutes a single-point failure to the communication link.

One possible paradigm shift that addresses both the issue of low efficiency and the need of
mechanical fine steering mechanism, is the use of an optical phased array transmitter. The
precise phase control mechanism of these transmitters renders them inherently suitable for
phase modulation, which in turn facilitates the use of high-wallplug-efficiency (∼ 70 %)
continuous-wave (CW) lasers. Moreover, just like radio frequency (RF) phased-array
antennas, beam steering through wave front control is easily achieved without relying on
mechanical fine-steering. In addition, due to the large redundancy offered by the many
laser-emitting elements, the performance of the array degrades only marginally if a few of
the array elements malfunction. If phase-modulated optical communications technology
employing optical phased array transmitters can be coupled with quantum-limited
advanced optical phase-sensitive receivers, then a new communication paradigm emerges,
one with significantly less power consumption and physical size and weight than those
required by the state-of-the-art optical communications transmitters.

Phased array antennas have had significant success in the RF domain for beam forming,
steering, communication and 3D imaging applications. Analogous efforts and advances in
the optical domain however, have had limited success. Past demonstrations of phased
array beam steering have required injection locking of the individual laser elements in the
array [1], which is inherently unstable and difficult to scale due to complexity and cost. An
alternative method utilizing a single laser, which is expanded and passed through an array
of phase modulators, has resulted in limited output power [2]. Furthermore, the
state-of-the-art for this method utilizes liquid crystal spatial light modulators, which have
limited bandwidth, and are not very well suited for operation in the space environment.

An alternative emerging technology for optical phased arrays that overcomes the
fundamental challenges encountered by previous approaches is enabled using fully
electronically controllable optical phase-locked loops (OPLLs). Members of our team at
the California Institute of Technology have recently demonstrated preliminary success in
coherent combination of multiple independent lasers, using OPLLs [3, 4]. This method
constitutes the crux of our novel phased-array transmitter concept, which is illustrated in
Figure 1. An array of semiconductor lasers is locked to a common master laser using
heterodyne OPLLs. Electronic phase shifters are utilized to control the phase of the offset
signal to each OPLL, hence controlling the phase of each individual laser emitter. Fast and
robust steering is accomplished by imparting a time-varying linear phase profile to the
electronic phase shifters.

II. Optical Phased Array - Theory

In this article we shall limit our treatment to the one-dimensional array shown in Figure 2,
as this is sufficient to characterize the experimental demonstration that we report in the
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Figure 1. A block diagram representation of the novel optical phased array implementation concept. An

array of semiconductor lasers is locked to a master laser. The phase of each laser in the array is controlled

electronically.

subsequent section. Consider a paraxial, z-directed beam propagation geometry, where all
optical source emitters are placed on the z = 0 plane. Suppose that a total of (2M + 1)
emitters (M ∈ Z), each with diameter da, are spaced equally apart by ds along the x axis
on this plane, with the center element of the array aligned with the optical axis. We
assume that each laser element emits a monochromatic, scalar and paraxial beam with
center-wavelength λ0. The baseband envelope of the n-th element, with units normalized
to
√

Watts/m2, is given by

En(x, y, 0) =

√
Pn

A
einΔφ W

(
x − nds

da
,

y

da

)
, (1)

at the transverse coordinate (x, y) on the z = 0 plane. Here n = −M, . . . ,M , W (x, y)
describes the identical axial beam profile that is exiting each emitter aperture,
A ≡ d2

a

∫
W 2(x, y)dxdy , Pn is the power output of the nth emitter, and Δφ is the linear

phase increment in each emitter. The ‘Fill Factor’ is defined as γ = da

ds
, and is a measure

of the effective relative area of the array that is actually filled with light.

When the far field propagation condition L � πd2
a/λ0 prevails, the intensity of the field on

the z = L plane is given by using the Fraunhofer far field approximation

I(x, y, L) ≡ |E(x, y, L)|2 =
P0d

4
a

λ2
0L

2A

∣∣∣∣W
(

2πda

λ0L
x,

2πda

λ0L
y

)∣∣∣∣
2 ∣∣∣∣E

(
2πds

λ0L
x − Δφ

)∣∣∣∣
2

. (2)

where W(kx, ky) ≡ ∫ W (x, y)e−i(kxx+kyy)dxdy is the 2D Fourier transform of the beam
profile for the individual emitters, and E(Ω) ≡∑M

n=−M

√
Pn/

√
P0e

−iΩn is the discrete-time
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Figure 2. The one dimensional optical phased array paraxial propagation geometry. The fill factor γ is

defined as da
ds

.

Fourier transform of the average field amplitudes from each laser. Several important
conclusions can be derived from this generic expression for the far-field irradiance:

• The steerable beam is given by the last term E , which has a main lobe centered at
the transverse coordinate

x =
Δφλ0L

2πds
(3)

and has a beam width of λ0L/(ds(2M + 1)). Hence, the beam can be steered by
varying the parameter Δφ.

• The Fourier transform of the beam profile of the individual lasers, W, defines a broad
envelope of width proportional to λ0L/da, inside which the beam can be steered.

• Since E is a discrete-time Fourier transform, the beam pattern is periodic with
λ0L/ds, i.e., the same beam pattern repeats along the x axis on the z = L plane
with this period.

• The envelope, W, suppresses the spurious periodic replicas relative to the main lobe.
However, because da < ds, at least one side lobe on each side of the main lobe will be
observed. Larger suppression of these side lobes results in more power being
concentrated in the main lobe.

• As the beam is steered further away from the optical axis, the side lobe suppression
ratio is reduced. For example, if Δφ = π, the main lobe and side lobe peak
irradiances are equal, resulting in half of the transmitted power being diverted in the
opposite transverse direction, as can be seen in Figure 3. Consequently, the effective
steering angle for the optical phased array is smaller than the envelope width, and
the desire for high side lobe suppression must be balanced with the effective steering
angle.
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To make the rest of our analysis more concrete, let us assume that our laser beam profiles
are Gaussian, with 1/e2 intensity diameter da, i.e.,

W (x, y) = e−4(x2+y2) , (4)

and suppose we have a uniform power distribution across all lasers, i.e., Pn = P0 for
n = −M, . . . ,M . Using Equation(2), the far field irradiance pattern is given by

I(x, y, L) =
P0d

2
aπ

2λ2
0L

2
e−

1
2

(
πda
λ0L

)2
(x2+y2)

sin2
(

πds

λ0L (2M + 1)[x − Δφλ0L
2πds

]
)

sin2
(

πds

λ0L [x − Δφλ0L
2πds

]
) . (5)

The far field irradiance I(x, 0, L) is plotted in Figure 3, for different values of �φ.
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Figure 3. The far-field irradiance pattern of 5 phased-array lasers (M=2) with a Gaussian beam profile and

equal power. The dashed curves indicate the envelope defined by the Fourier transform of the Gaussian

beam, i.e.,W, and the solid curve is the steered beam. It is evident that as the beam is steered off axis, the

main lobe is subject to increasing attenuation, and the side lobe attenuation decreases.

A. Steering angle

From Figure 3, it can be seen that as the beam is steered further away from the optical
axis, the power is increasingly diverted from the main lobe to one of the adjacent side
lobes, which limits the practical steering range. To quantify this observation, let us
assume, with no loss of generality, that Δφ > 0. The position of the main lobe, xm, and the
position of its adjacent side lobe, xs, can be extracted from Equation (5). Let us define the
effective steering angle of the optical phased array as the maximal value of Δφ that yields
a main lobe peak to side lobe peak irradiance ratio of K (K ≥ 1), i.e., Δφmax that yields2

2The ratio of the main lobe and side lobe peak irradiances is a simple parameter that can be used to

analytically estimate the fraction of the total energy that is directed in the intended direction.
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I(xm, y, L)
I(xs, y, L)

= K . (6)

Using Equation (5) we find that Equation (6) is satisfied when

|Δφmax| = max

{
0, π

(
1 − 2

π2
ln(K)

(
1
γ

)2
)}

(7)

Hence, in addition to the suppression factor K, the fill factor γ determines the effective
steerable range. We define normalized steering angle as the location of the main lobe,
measured in beam width units per emitter - 1

(2M+1)×[steerable position in beam width
units].

Figure 4 shows the maximum normalized steering angle as a function of the fill factor, for
several side lobe suppression values. The suppression factor has logarithmic contribution
to the steering range, whereas the fill factor has quadratic dependence. Furthermore, for
Gaussian-shaped beam profiles, K cannot exceed eπ2/2 ≈ 139.
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Figure 4. Maximum normalized steering angle ( 1
(2M+1)

× [maximum steerable position in beam width

units]) as a function of fill factor,γ = da/ds, for several different values of side lobe suppression factor, K.

Note that a fill factor of at least 0.7 is required to achieve steering with a side lobe
suppression of 10dB.

B. On-axis irradiance

The capacity of an optical communication link (i.e., the rate of reliable data transfer) is
determined primarily by the fraction of transmitted power that couples through the
receiver aperture. In a deep-space optical communication link, this quantity is
proportional to the far-field on-axis irradiance given by the transmitted beam. The side
lobes in an optical phased array imply that a fraction of the transmitted power is not
directed to the desired far-field transverse coordinate, which therefore results in a loss
factor relative to an optical beam transmitted through a single aperture with the same
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dimensions as the phased array. It can be shown from Equation (5) that in order to
achieve the same on-axis irradiance with a power-P Gaussian beam of diameter DG (in
the x-axis) and an optical phased array with total power P and fill factor γ, the optical
phased array diameter DOPA must satisfy

DOPA = DG/γ . (8)

It is worthwhile to note from Equations (7) and (8) that the fill factor γ plays a very
significant role in determining the steerable range, attainable side lobe suppression and the
effective size of the array to deliver comparable power to the far-field. Hence, a high fill
factor is critical (for example, γ ≥ 0.75) for high-performance optical phased arrays.

C. OPA for deep space optical communications

Having developed the theoretical limitations of an OPA based steering mechanism, we
shall now consider its consequence on deep space communication. Let us consider a
deep-space optical communication link from Mars. The maximum point-ahead angle for an
optical communication transmitter in Mars orbit is approximately 400 μrad. A diffraction
limited 20 cm-diameter transmitter aperture for a 1550 nm center-wavelength downlink
beam will yield a beam divergence of approximately 10 μrad, which would result in up to
about 40 beam widths of steering to compensate for maximum point-ahead. This
represents the approximate range of desired steering capability. The theoretical analysis
we have presented in this article demonstrates that the number of beam widths that can
be steered (subject to a constraint on the minimum side lobe suppression) is strongly
influenced by the fill factor of the phased array, as well as the number of array elements.
In particular, we find that if we achieve a reasonable fill factor of 0.80, and require that
the side lobes have at least 10 dB suppression relative to the main lobe, a steering range of
40 beam widths requires 300 elements per dimension. In the next section, we analyze a
possible realization of an OPA, and discuss its scalability.

III. Realization of an OPA using Optical Phase Lock Loops

Electronic phase-locked loops (PLLs) enable phase synchronization of oscillators, and play
a crucial role in today’s electronics and communications systems. An optical analog of a
PLL has been demonstrated using electronic feedback [5]. One of the more attractive
realizations of an optical phase-locked loop (OPLL) can be achieved using semiconductor
lasers (SCL). The strong dependence of the SCL’s frequency on the injection current, due
to the refractive index modulation by free carriers [6], makes it an ideal candidate for
OPLLs, where it acts as a current controlled oscillator. Moreover, scalability, power
efficiency, low cost and reliability of SCLs make them very attractive for OPLL arrays.

A schematic diagram of a typical heterodyne OPLL is shown in Figure 5. The beat signal
between a commercially available SCL and a narrow linewidth master laser is detected and
amplified. An electronic mixer is used to down convert the beat signal using an RF
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reference oscillator. The down-converted signal is then filtered, and fed back to the laser to
close a negative feedback loop. In steady state, the frequency of the SCL satisfies [7]

ωs = ωm + ωRF , (9)

where ωs is the (angular) frequency of the SCL laser, ωm and ωRF are the frequency of the
master lasers and the RF oscillator respectively. It should be noted that ωs = ωm − ωRF is
also a solution, but for simplicity the ‘+’ sign was chosen. The phase of the SCL is also
tracked and satisfies

φs = φm + φRF + φe (10)

where φe is a a constant phase error necessary to maintain steady state. In the high loop
gain regime φe is typically small and can be neglected (for a reasonably stable laser).

Small signal deviations about the steady state (noise) can be linearized and analyzed using
standard control system analysis methods [7]. It can be shown that the phase noise of the
SCL, within the bandwidth of the loop, tracks the phase noise of the master laser, while
suppressing its own phase noise [5].

Figure 5. Schematic diagram of a typical heterodyne OPLL

One of the key requirements of an optical phased array is that all sources have exactly the
same defined frequency. Referring to Figure 1 - provided all the OPLLs in the array are
fed by the same master laser and RF oscillator, all the OPLLs outputs have the same
frequency, as can be seen by Equation (9). The phase of the output field of the nth OPLL
is given by

φs,n = φm + φRF + φn + φe,n (11)

For high enough DC gain, the last term of Equation (11) can be neglected. By controlling
the electronic phase shift φn we can obtain precise control over the phase of the array
elements, which is required to obtain the desired beam steering.

From section II-C, an application for deep space communication would require the
realization of (2D) array that contains about (300)2 ∼ 100, 000 elements. This
immediately implies that any such realization would have to be based on an on-chip
fabrication of arrays of lasers together with at least some of the necessary electronics and
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optoelectronic devices. Despite the fact that this is a true technological challenge, several
groups have reported vertical-cavity surface-emitting laser (VCSEL) 2D laser arrays that
can support tens to hundreds of laser elements per dimension and can achieve output
powers of several hundred watts (but typically suffer from poor fill factors) [8, 9, 10].
There is an ongoing effort to fabricate integrated optoelectronic devices.

Since we are interested in precise control over the fringe pattern caused by interference of
the array’s elements, it is important to analyze the effect of the different sources of phase
noise on the interference pattern. Phase noise, as manifested in the linewidth of the beam,
causes a reduction of the visibility of the fringe pattern, and an unstable behavior of the
main lobe position. The aim of the next section is to identify the statistical characteristics
of these effects.

A. Performance of an OPLL-based phased array.

Though there are several sources of phase noise in the system, the most significant one by
far is the residual phase noise due to the finite loop bandwidth. Therefore, other noise
types, such as phase noise due to finite master laser linewidth, constant phase errors due
to inaccuracies in the electronics, or due to slowly drifting frequencies are all neglected in
the following analysis.

The phase locked loop has a finite bandwidth mainly due to the frequency modulation
(FM) response of the laser and time delays in the loop. Outside the loop bandwidth the
slave lasers are unable to track the master laser, and their own phase noise is not
suppressed. The phase noise of each free running slave laser is uncorrelated with the
others, and is mainly due to spontaneous emission. Following the analysis of [5] we will
model the free running phase noise as a Gaussian process and treat the loop as a linear
filter. Since the free running phase noise is assumed to be Gaussian, the linearly filtered
phase noise would also be a Gaussian random process.

Next, consider the sum of Equation (2). Assuming equal power in each element of the
array, and linear phase increment profile, we can express the term responsible for the
fringe pattern as follows

I ∼
∣∣∣∣E
(

2πds

λ0L
x − Δφ

)∣∣∣∣
2

=

∣∣∣∣∣
M∑

k=−M

e−ik( 2πdsx
λ0L −�φ)+iφn,k(t)

∣∣∣∣∣
2

(12)

where φn,k(t) stands for the phase noise of the kth emitter. We treat all φn,k(t) terms as a
random process and the other variables as deterministic. We further assume that all phase
noise terms (different ks) are uncorrelated (as they represent two independent free running
lasers). Our goal is to calculate the expectation value and variance of the sum. At each
time sample, the ensemble of sample functions is Gaussian distributed by assumption.
Expanding Equation (12) and taking the expectation value we find that the average value
of the field intensity is
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〈I(t)〉 ∼ (2M + 1) + e−σ2 ×

⎧⎪⎪⎨
⎪⎪⎩

M∑
{j,k}=−M

j �=k

e−i(k−j)( 2πdsx
λ0L −�φ)

⎫⎪⎪⎬
⎪⎪⎭ (13)

where σ2 is the noise variance of φn,k(t).3 To obtain an explicit expression, we assume
that each beam has a Gaussian profile of width da as in section II, to yield

I(x, y, L) =
P0d

2
aπ

2λ2
0L

2
e−

1
2

(
πda
λ0L

)2
(x2+y2)

×
⎧⎨
⎩(2M + 1)(1 − e−σ2

) + e−σ2
sin2

(
πds

λ0L (2M + 1)[x − Δφλ0L
2πds

]
)

sin2
(

πds

λ0L [x − Δφλ0L
2πds

]
)

⎫⎬
⎭

(14)

The visibility, V = Imax−Imin

Imax+Imin
, can be calculated by evaluating the maximum and

minimum points in proximity of the main lobe. A plot of visibility as a function of σ is
given in Figure 6.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

σ [units of π radians]

V

 

 

N=3
N=21
N=201

Figure 6. Visibility vs. residual phase noise for different N = (2M+1) values

To get more insight out of that equation, assume (2M + 1) � 2π
�φ (large array) and σ � 1

(true in stable PLLs), and compute the visibility V

V (M � 2π

�φ
, σ � 1) ≈ (1 − σ2)(2M + 1)2

(1 − σ2)(2M + 1)2 + 2σ2(2M + 1)
(15)

Notice that as M → ∞, the visibility goes to 1. Hence, by implementing a large number of
emitters in the array, we can mitigate the effect of untracked residual phase noise.

It should be noted that if the assumption on Gaussian zero mean noise could also be made
for constant phase errors due to electronic inaccuracies, or due to slowly varying frequency

3We have assumed that all φn,k(t) are independent and identically distributed Gaussian random variables,

with variance σ2.
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drift, the result of this section could be applied to them as well. However, If the different
sources are somehow coupled (for example, thermal fluctuation effect all OPLLs in the
same way), these constant errors are no longer uncorrelated, and the effects of this
systematic error should be re-analyzed.

IV. Experiment

Using the technique discussed above, beam steering was demonstrated in a
proof-of-principle experimental array consisting of two OPLLs.

A. Setup

The experimental setup is similar to the one of Figure 1 with N = 2. Two commercially
available “slave” distributed feedback (DFB) SCLs at a wavelength of 1539 nm were
phase-locked to an ultra narrow linewidth “master” fiber laser using a heterodyne OPLL
configuration. A small fraction of the output from each laser was split off for use in the
OPLL, while the remaining fraction constituted the observed output into the imaging
system. An RF signal at 1.7 GHz was split into two and input to each OPLL. One of the
RF branches had a controllable phase shifter, which was used to shift the phase by up to π

radians at that frequency. The OPLLs were similar to Figure 5 with the loop filter being a
passive lag filter.

To achieve a high fill factor the output of each OPLL was connected to the input of a
custom made fiber holder array. By choosing suitable outputs, the spacing between
emitters was

ds = b × n, n = 1, 2...7 (16)

where b = 250μm and n could be varied from 1 to 7. The diverging beams from the fiber
array were collimated using a custom micro lens array. The far field pattern was then
imaged using a camera at distance z = 431.8 mm from the lens array plane. A schematic
of the optical system is shown in Figure 7.

The micro fiber holder array could support up to eight laser inputs. In our setup the eight
different inputs of the array were used to image far field pattern with different fill factors,
with the distance between sources changed as described by Equation (16).

B. Experimental Results

The RF phase shifter was first characterized, verifying that at the operating frequency of
1.7 GHz a phase shift of π radians could be obtained. The two lasers were simultaneously
phase-locked to the master laser and characterized by measuring the beat signal between
the master and slave lasers using an electronic spectrum analyzer (SA). Figure 8 shows the
output of the SA for one of the OPLLs (the second OPLL had a very similar beat signal
spectrum, and is therefore not shown).
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Figure 7. The optical imaging system.
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Figure 8. Spectrum of the master-slave beat signal during phase-lock for one of the two heterodyne

OPLLs. The residual phase error in the loop is about 0.4 rad. The resolution bandwidth is 100 kHz.
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The two lasers were locked to the master laser simultaneously to obtain a fringe pattern.
Figure 9 shows the affect of simultaneous lock of the two lasers.

(a)

(b)

Figure 9. Image of the the far field on the camera for n = 1. (a) The lasers are out of lock (fringes are due

to aperture). (b) The two lasers are simultaneously locked and a fringe pattern becomes visible.

As seen in Figure 10, a change in the RF phase by π causes a fringe shift by one half of the
fringe separation, demonstrating direct electronic control over the optical phase, on a
one-to-one basis. From Figure 10(b), the fringe visibility is not optimal, and the minima
do not go down to zero. Besides poor camera dynamic range, the main factors that reduce
the visibility are mismatched optical intensities, mismatched polarization states of the
lasers, and residual phase errors in the OPLL’s that significantly reduce the visibility.
Improving the loop bandwidth, matching laser intensities and polarization states should
significantly improve fringe visibility.

The width of the Gaussian beam, the beam separation, and the distance to the camera z

were used to calculate the theoretical fringe pattern using Equation (5). This fringe
pattern is plotted along with the experimental measurement in Figure 11, showing
excellent agreement.

The experiment described above was performed with different values of the separation
between sources. The fiber holder array structure allowed us to change the separation
according to Equation (16). Representative measured fringe patterns for n = 1 and n = 2
are shown in Figure 10 (a) and (b) respectively. As the separation is increased
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Figure 10. Horizontal section of the measured intensity with (a) n = 1, γ ≈ 0.7 (b) n = 2, γ ≈ 0.35, for RF

phase shifts of 0 and π, demonstrating electronic beam steering.

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

Angle in the far field [mrad]

N
or

m
al

iz
ed

 In
te

ns
ity

 →

 

 

Experimental
Theoretical

Figure 11. Comparison of the experimental fringe pattern with the theoretical calculation (n = 1).
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(corresponding to lower fill factors, γ), the number of fringes within the envelope increases,
accompanied by a decrease in the angular width of the central lobe.

The average separation between the fringes was extracted from the graphs and plotted as
a function of the inverse source separation 1/ds, as shown in Figure 12, and agreed well
with the theoretical prediction (Equation (5)) for the change in fringe separation with spot
separation.
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Figure 12. Separation between fringes as a function of the inverse beam separation 1/ds, compared to

theory.

V. Conclusion and Discussion

A possible paradigm shift in deep-space optical communications, using an optical phase
lock loop based phased array was analyzed and a two-laser array was experimentally
demonstrated and compared to theory. Realization of a large element array would enable
communication architectures that utilize constant-envelope modulations, such as binary
phase-shift keying (BPSK) or offset quadrature phase-shift keying (O-QPSK), that would
allow future optical communications terminals to use very high efficiency laser diodes (>
70 %). An optical phased array exercising precise control over the phase of the
transmitted beam permits the use of such modulation schemes while maintaining the
potential to emit hundreds of watts of power, in addition to offering a high degree of
redundancy in transmitter power and steering capability from the multiplicity of array
elements. When coupled with quantum-limited optical receivers that enable
communication at a photon efficiency that far exceeds the state-of-the-art coherent
detection schemes (i.e., heterodyne or homodyne) [11], we can envision future deep-space
optical transmitters, operating at efficiencies greater than 70 %, weighing on the order of
10 kg, while providing steerable optical output power exceeding 100 watts. This efficiency
is nearly an order of magnitude higher than current optical communications terminals, and
even higher than state-of-the-art RF communication terminals.

It was demonstrated both experimentally and theoretically that the performance of the
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optical phased array is highly dependent on the fill factor γ. It is therefore desirable to
increase the fill factor as much as possible. Furthermore, for any realistic array, the
number of elements for each dimension needs to be in the hundreds. Therefore the
primary technical future challenges are increasing the total number of elements in the
transmitter arrays and improving the fill factor, in addition to enabling high-efficiency
coherent modulation of the array elements for communication. These require on-chip
integration of the array elements and the supporting electronics in a scalable architecture.
The fully-electronic phase-control technology we have demonstrated in this article offers a
novel solution that is well-suited to respond to these needs.

In the experiments described in this article, we have demonstrated fringe steering using
OPLL based electronically controlled optical phased arrays. The fringe pattern was
compared to the theoretical pattern and good agreement between the two was obtained.
The lasers were demonstrated to simultaneously remain locked for periods exceeding 30
minutes. This could be improved by using modified loops and/or SCLs that would enable
stable phase locking with higher gain. When implemented in a multi-element array, we
expect that the effect of an occasional loss of lock in a single element would be negligible.
The fringe pattern was stable, and any instability was attributed to changes in length of
the optical fibers (fiber breathing) due to environmental changes. It is expected that an
integrated phased array with no fibers will be much more stable.
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